mlrMBO: A Toolbox for Model-Based Optimization of Expensive Black-Box Functions

Bernd Bischl1 \quad Jakob Richter2 \quad Jakob Bossek3 \quad Daniel Horn2 \quad Michel Lang2

June 28, 2016

1Department of Statistics, LMU Munich

2Faculty of Statistics, TU Dortmund University

3Westfälische-Wilhelms-Universität Münster, Germany
When to use mlrMBO?
When to use mlrMBO?

Answer: When `optim(par, f(x))` is not enough!

- `f(x)` is expensive. (That's why GAs won't work!)
- `f(x)` is not convex.
- `f(x)` is noisy.
- `par` is not only numeric.
When to use mlrMBO?

Answer: When `optim(par, f(x))` is not enough!

- `f(x)` is expensive.
 (→ that’s why GAs won’t work!)
- `f(x)` is not convex.
- `f(x)` is noisy.
- `par` is not only numeric.

![Graphs showing different optimization landscapes](image_url)
Model-Based Optimization
Expensive Black-Box Optimization

\[y = f(x), \quad f : \mathbb{X} \rightarrow \mathbb{R} \]
\[x^* = \arg\min_{x \in \mathbb{X}} f(x) \]

- \(y \), target value
- \(x \in \mathbb{X} \subseteq \mathbb{R}^d \), domain
- \(f(x) \) function with considerably long runtime
- Goal: Find optimum \(x^* \)
Basic Idea

Function evaluations are expensive, so keep number of black-box evaluations low

- Try to predict function values by regression model.
 → surrogate model
- Search for points leading to finding the optimum on the surrogate model.
- Update surrogate model with evaluated points.

Search mechanism balances exploitation and exploration.

- Just evaluate \mathbf{x} where
 - Predicted function value is low: $\Downarrow \hat{y}(\mathbf{x})$
 - Uncertainty is high: $\Uparrow s^2(\mathbf{x})$
 ⇒ infill criterion: $\text{Inf}(\mathbf{x})$
- Popular choice proposed by Jones et al. (1998):
 Improvement: $I(\mathbf{x}) = \max(0, |f(\mathbf{x}^*) - f(\mathbf{x})|)$
 Expected Improvement $EI(\mathbf{x}) = E(I(\mathbf{x}))$
Evaluate initial design ♦ to generate surrogate model \(\hat{y} \) ——, propose new point ▲ based on maximum of \(EI \) ——.
Update surrogate model \hat{y} with evaluated point ■, propose new point ▲ based on maximum of EI.

Iter = 2, Gap = 1.3598e-01
Iter = 3, Gap = 3.9405e−02
MBO Visualization

...until budget is exhausted.
Application
Expensive Black-Box Optimization

mlrMBO can be used for:

- Expensive Black-Box Optimization
- Hyperparameter Tuning for Machine Learning Methods
- Machine Learning Pipeline Configuration
- Algorithm Configuration
- ...

Jakob Richter (TU Dortmund, Germany)
Hyperparameter Tuning

• Still common practice: grid search
 For a SVM it might look like:
 • $C \in (2^{-12}, 2^{-10}, 2^{-8}, \ldots, 2^8, 2^{10}, 2^{12})$
 • $\gamma \in (2^{-12}, 2^{-10}, 2^{-8}, \ldots, 2^8, 2^{10}, 2^{12})$
 • Evaluate all $13^2 = 169$ combinations $C \times \gamma$

• Bad because:
 • optimum might be ”off the grid”
 • lots of evaluations in bad areas
 • lots of costly evaluations

• How bad? ➔
Hyperparameter Tuning

- Because of budget restrictions grid might even be smaller!
- Unpromising area quite big!
- Lots of costy evaluations!

With mlrMBO it’s not hard to do it better! →

Jakob Richter (TU Dortmund, Germany)
Define classification learner and its Hyper Parameter search space

```r
lrn = makeLearner("classif.svm")
ps = makeParamSet(
    makeNumericParam("cost", -15, 15, trafo = function(x) 2^x),
    makeNumericParam("gamma", -15, 15, trafo = function(x) 2^x))
```

Define Tuning Problem

```r
mbo.ctrl = makeMBOControl()
```

```r
mbo.ctrl = setMBOControlTermination(mbo.ctrl, iters = 10)
```

```r
surrogate.lrn = makeLearner("regr.km", predict.type = "se")
ctrl = mlr::makeTuneControlMBO(learner = surrogate.lrn,
    mbo.control = mbo.ctrl, same.resampling.instance = FALSE)
rdesc = makeResampleDesc("Subsample", iters = 10)
res.mbo = tuneParams(lrn, sonar.task, rd, par.set = ps,
    control = ctrl, show.info = FALSE)
```
Grid Search vs. MBO

grid search

MBO

SVM, RBF, gamma

SVM, RBF, cost

mmce

Jakob Richter (TU Dortmund, Germany)
Hyperparameter Tuning

Compare results:

Grid Tuning Result:
res.grid

Tune result:
Op. pars: cost=64; gamma=0.0156
mmce.test.mean=0.147

Tuning Costs (Time):
sum(getOptPathExecTimes(res.grid$opt.path))

[1] 17.967

MBO Tuning Result:
res.mbo

Tune result:
Op. pars: cost=1.32e+03; gamma=0.00938
mmce.test.mean=0.133

Tuning Costs (Time):
sum(getOptPathExecTimes(res.mbo$opt.path))

[1] 12.764

<table>
<thead>
<tr>
<th>misclassification time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>grid search</td>
</tr>
</tbody>
</table>

Jakob Richter (TU Dortmund, Germany)
Compare to CMAES

It’s not hard to beat grid search! How about a state of the art optimizer?

MBO vs. cmaes on Rosenbrock 5D

Jakob Richter (TU Dortmund, Germany)
Extensions
Extensions

- Different surrogate models to support mixed valued domain \(X \)

\[
\begin{align*}
x_1 \text{ (kernel)} & \quad x_2 \text{ (cost)} \\
\text{linear} & \quad [0, \infty] \\
\text{radial} & \quad [0, \infty] \\
x_3 \text{ (gamma)} & \\
\end{align*}
\]

\[
\text{ps} = \text{makeParamSet(}
\begin{align*}
\text{makeDiscreteParam(id = "kernel",}
& \quad \text{values = c("linear", "radial")),}
\text{makeNumericParam(id = "cost"),}
\text{makeNumericParam(id = "gamma",}
& \quad \text{requires = quote(kernel!="linear"))}
\end{align*}
\)

- Different Infill-Criteria: \textit{mean}, \textit{EI}, \textit{CB}, ...

- Batch proposal for easy parallelization

```r
library(parallelMap)
ctrl = makeMBOControl(
  propose.points = 4L, ...)
# ...
parallelStartMulticore(4)
mbo(...)
parallelStop()
```
Advanced Extensions
Expensive Black-Box Optimization

\[
\min_{x \in \mathbb{X}} \mathbf{f}(x) = \mathbf{y} = (y_1, \ldots, y_m) \text{ with } \mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^m
\]

- **\(y \) dominates \(\tilde{y} \) if**
 \[
 \forall i \in \{1, \ldots, m\} : y_i \leq \tilde{y}_i \\
 \text{and } \exists i \in \{1, \ldots, m\} : y_i < \tilde{y}_i
 \]

- Set of non-dominated solutions:
 \[
 \mathcal{X}^* := \{ x \in \mathcal{X} : \nexists \tilde{x} \in \mathcal{X} : \mathbf{f}(\tilde{x}) \text{ dominates } \mathbf{f}(x) \}
 \]

- \(\mathcal{X}^* \) is called Pareto set, \(\mathbf{f}(\mathcal{X}^*) \) Pareto front
- Goal: Find \(\hat{\mathcal{X}}^* \) of non-dominated points that estimates the true set \(\mathcal{X}^* \) Different methods for mlrMBO discussed in Horn et al. (2015).
Conclusion
Conclusion

Why use mlrMBO?
- Efficient model based optimizer
- Powerfull toolbox for a wide variety of set-ups
- Different black box scenarios covered
- Improved exploration of search space within time budget
- *mlrMBO* is easy to use!

Outlook
- Improve user friendliness
- Improve parallel computation

We use R: Find us on GitHub
- github.com/mlr-org/mlr
- github.com/mlr-org/mlrMBO
References

- Bischl, Bernd et al. (2014). “MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization”. In: Learning and Intelligent Optimization Conference. Florida. DOI: 10.1007/978-3-319-09584-4_17.