Defines how the hyperparameter tuning should be conducted
makeHyperControl( mlr.control = NULL, resampling = NULL, measures = NULL, par.config = NULL )
mlr.control | [ |
---|---|
resampling | [ |
measures | [ |
par.config | [ |
[HyperControl
]
Other HyperControl:
getHyperControlMeasures()
,
getHyperControlMlrControl()
,
getHyperControlResampling()
,
setHyperControlMeasures()
,
setHyperControlMlrControl()
,
setHyperControlResampling()
hyper.control = makeHyperControl( mlr.control = makeTuneControlRandom(maxit = 5), resampling = cv2, measures = acc ) hyperopt(task = iris.task, learner = "classif.svm", hyper.control = hyper.control)#>#>#> #>#>#>#>#>#>#>#>#>#>#>#>#>#>#> Tune result: #> Op. pars: cost=0.158; gamma=3.27e+03 #> acc.test.mean=0.2333333